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Sampling of quantum dynamics at long time
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The principle of energy conservation leads to a generalized choice of transition probability in a piecewise
adiabatic representation of quantum(-classical) dynamics. Significant improvement (almost an order of mag-
nitude, depending on the parameters of the calculation) over previous schemes is achieved. Perspectives for
theoretical calculations in coherent many-body systems are opened.
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The importance of theoretical methods for the calcu-
lation of time-dependent quantum properties cannot be
emphasized enough. The lack of general algorithms, so
reliable as classical molecular dynamics simulations [1],
is to be contrasted with the manifold of open problems
that scientists face both in condensed matter [2] and
quantum information technology [3]. Lately, we are also
witnessing a renaissance of quantum approaches to biologi-
cal phenomena [4]: a revival of interest generated by the
combination of methodologies from open quantum sys-
tems [5] and quantum information theory [3]. Undoubt-
edly, the possibility of performing long-time quantum dy-
namical simulations would be an asset for all the above
fields.

When considering the calculation of time-dependent
quantum properties, two main methods are available:
time-dependent density functional theory [6] and quantum-
classical formalisms [7]. Time-dependent density functional
methods are usually limited to linear response while
quantum-classical methods are restricted to perturbations
around the adiabatic evolution, i.e., nonadiabatic correc-
tions, of few relevant quantum degrees of freedom
interacting with a classical bath. Nevertheless, quantum-
classical methods promise to access the investigation of
properties relevant to biological systems [7]. Here, we
are considering the formulation of quantum-classical
theory by means of algebraic brackets which was
proposed originally in [8] and shown to arise from a linear
approximation of the partially Wigner-transformed
quantum commutator [9]. It is remarkable that, when
the environmental degrees of freedom are harmonic and
the coupling to the quantum subsystem is linear in the
bath degrees of freedom, as in gauge theory [10], such
theory becomes fully quantum. What is interesting from a
computational point of view is that, within such a theory, a
particular approximation (called momentum jump in the adia-
batic basis of the total system) leads to represent nonadia-
batic dynamics in terms of piecewise (adiabatic) determinis-

tic trajectories interspersed by stochastic quantum transitions
[11,12].
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There is a long history of development and methods for
treating nonadiabatic transitions with so called surface-
hopping schemes [7]. Such schemes were originated in [13].
A more recent approach can be found in [14]. These methods
are successful for the description of the dynamics but do not
easily lead to an accurate formulation of the statistical me-
chanics of quantum-classical systems. Instead, the theory
stemming from [9] allows one to address the consistent for-
mulation of the quantum-classical statistical mechanics [15]
of general hybrid systems, i.e., the theory can describe, in the
non relativistic limit, any quantum subsystem coupled to a
classical bath. It exactly conserves the energy of the total
system and consistently describes the coupling between the
quantum subsystem and the classical bath (or the quantum
harmonic bath represented in Wigner phase space). The
forms of the equations in the momentum-jump ap proxima-
tion also naturally provide a sampling transition probability
for nonadiabatic change in state. However, when nonadia-
batic effects are included, the phase space trajectories repre-
senting the quantum(-classical) dynamics do no longer con-
serve the energy. Despite this, in its original formulation,
called sequential time-step propagation [11,12], the algo-
rithm is successful, although limited to somewhat short-
times because of numerical instabilities arising from the
sampling of the nonadiabatic transitions. The instability, in
practice, restricts the range of applications of the method to
charge transfers and rate processes [16].

More general quantum processes require the ability of
sampling at longer time. In this Brief Report, we show
how to achieve this by means of a suitable generalization
(implementing the principle of energy conservation) of
the transition probability in the sequential time-step pro-
pagation: this is the main theoretical idea we propose and
it is introduced by Eq. (5) in the following. Before providing
our solution, we sketch the theory and the original version
of the sequential time-step propagation, which will be re-
ferred to in the following as primitive algorithm. The inter-
ested reader will find more details in [12]. The theory of
quantum-classical dynamics is defined by the equation
[17-19].
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where xy/(X) is a quantum operator in a partial Wigner rep-
resentation depending on the phase space point X=(R,P),
comprised by coordinated and momenta, respectively; I:IW is
the partially Wigner-transformed Hamiltonian operator of the
total system, B¢ is the symplectic matrix, and @ stands for the
phase space gradient d/ X, with the arrow giving the direc-
tion of action of the operators. Without loss of generality, one

can assume the form of the Hamiltonian to be I-AIW(X)=2LM
+hy(R). In the adiabatic basis, defined by the eigenvalue

equation Aw(R)|a;R)=E(R)|a;R), the quantum-classical
evolution reads

X%/a (X’t) = E (eilﬁ)aa’,ﬁﬁ’xg/ﬁ (X)’ (2)

BB’
where iﬁaarﬁﬁr=i£0 1000 g1 +J aar ppr-  The  diagonal
operator i£ o =0 +iL o) 8ol g is  defined in

terms of the quantum adiabatic frequency w,, (R)=[E,(R)
—E,(R)]/h and of the classical-like Liouville operator
iLaar=(P/M)(9/(9R+(1/2)(F§“V+F3V,)(r9/r9P), where F7j, are
the Hellmann-Feynman forces [20]. The operator J,, g is
purely off-diagonal and its action realizes the quantum nona-
diabatic transitions. It is worth remarking that Egs. (1) and
(2) exactly conserve the total Hamiltonian of the system
Hy(X).

In the momentum-jump approximation, the form of the
off-diagonal operator J,,' ggr is 51mp11ﬁed [12]. Here, we
denote such an approximation by JLm BB The action of
J(an;g 5p' changes the quantum state and rescales the bath mo-
menta. The technical details can be found, among many
other possible references, in [12]. Using the momentum-
jump operator, one can also deﬁne a momentum—jump Liou-
ville operator, zL ’BB’_I’C ’BB’+J£W BB approximating
the exact operator zﬁm pp in Eq. (2).

Deterministic dynamics is too complicated to be solved,
so one has to resort to stochastic schemes. A very elegant
approach is provided by the sequential short time propaga-
tion [12] (the primitive algorithm). This is summarized as
follows. For a small time-step 7 the quantum-classical propa-
gator is approximated as

(eITC(mp))aa',ﬂﬁ' ~ ' L e (6ozﬁ’5 gt Tjaa pﬁ’) (3)
One can prove that the concatenation of short time steps,
according to Eq. (3), reproduces exactly the Dyson integral
expansion of the operator exp(i7£™) ./ '~ The algorithm
unfolds by considering the action of JmP) dictated by a sto-
chastic process with a certain transition probability. The form
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of J™ naturally suggests the following primitive choice of
the transition probability (for example considering the «
— B quantum transition):

P
’ _daB(R) T

PoX. 7 )——‘—"P ; 4)
1+ MdaB(R) T

where d,z=(a:R|3/dR|B:R) is the coupling vector. Normal-
ization fixes the probablhty of not makin any transition in
the time interval 7 as Q (X Ar)=1- 73 . The stochastic
propagation amounts to determmlstlc trajectory segments,
propagating on single or mean energy surfaces, interspersed
by transitions between energy surfaces. The transitions break
the conservation of energy along the single trajectory: the
conservation is only satisfied in an averaged sense in the
ensemble. As one can see from Eq. (4), arbitrary shifted mo-
menta P’ can arise from a sampled transition. As experience
has shown, this leads in general to very big denominators in
the left hand side of Eq. (4). This denominators get multi-
plied with each other along the trajectory to give its overall
weight in the stochastic ensemble. The concatenation of big
weights arising from nonadiabatic transitions produces a nu-
merical instability, which has so far limited the application of
the primitive algorithm to somewhat short times.

The principle of energy conservation, which is exactly
satisfied by Eq. (1), guides us in defining a generalized tran-
sition probability as

' sE e’ BB
e xay By
1+ T|<a|B>|W(C&5aa’,ﬁﬁ')

where we have deﬁned (P/M)d ,5(R)= (a|B). Again, nor-
malization provides QQB(X At)=1-P,s. Upon introducing
the Vanatlon in energy in any quantum transition &, BB
——+2[E (R)+E,(R)]- 2M 2[EB(R)+E/3,(R)] the gener-
alized weight introduced in Eq. (5) is defined as

1 lf |gaa’ B‘Br| = Cg
wlce) = ’ 6
(ce) {O otherwise, ©)

with c¢¢ tunable constants controlling the numerical error on
the energy conservation.

The generalized transition probability in Eq. (5) and the
energy-conserving weight in Eq. (6) are our fundamental
findings, improving the primitive algorithm. Because of our
choice of w(cg), the sampled transitions can only allow
shifted momenta P’, which conserve (within the required
numerical error specified by cg) the energy of the system.
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FIG. 1. Comparison of the primitive (A) and energy-conserving
(@) sampling for 8=0.3, O=1/3, and £=0.007. The calculation
with the primitive algorithm are propagated until =20 and then
stopped since already around t#=15 the statistical error becomes
very big, as the error bars show. The calculation with the energy-
conserving sampling (@), with ¢=0.01, can be extended further
than r=30.

This in turn avoids arbitrarily big denominators in Eq. (5)
and dramatically improves the stability of the algorithm.

In order to illustrate the efficiency of the energy-
conserving sampling, we performed a series of calculation on
the dynamics of the spin-boson model [21]. The partially
Wigner-transformed Hamiltonian of this model (in scaled co-
ordinates) is I:IW:—Q&X+Ejy=1(PIZ-/J:+ wJZ-Rf/Z—chj&z, where
G, and &, are the Pauli matrices, and R; and P, are coordi-
nates and momenta of N harmonic degrees of freedom (in the
following we have used N=200, and c; are coupling con-
stants defined in term of the Kondo parameter £). Details of
the model and definition of coordinates and parameters can
be found in [12]. Figures 1 and 2 illustrate the numerical
comparison between the primitive and our energy-conserving
sampling for the relaxation dynamics of o, for various cou-
plings, temperatures, and tunnel splitting €). The results ob-
tained with the primitive algorithm are displayed by white
triangles while those obtained with our energy-conserving
sampling by black filled circles. Figure 1 displays the results
of the numerical calculation for B8=0.3, Q=1/3, and &
=0.007. Basically, after /=15 (in dimensionless units) the
error bars on the primitive algorithm results grow exponen-
tially fast and the calculation is stopped at t=20. Instead, the
calculation with our generalized sampling scheme can be ex-
tended further than r=30: for this set of parameters we obtain
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FIG. 2. Comparison of primitive (A) and energy-conserving (@)
sampling for B=12.5, 1=0.4, and £=0.09. The calculation with the
primitive algorithm are propagated until =20 and then stopped
since already around #=12 the statistical error becomes very big, as
the error bars show. The calculation with the energy-conserving
sampling (@ and a continuous line to help the eye), with c¢=0.01,
can be extended further than =100 (the error bars of the order of
magnitude of the @ symbols).

an improvement over the time interval we can sample of at
least two. Figure 2 displays the results of the numerical cal-
culation for 8=12.5, 0=0.4, and £=0.09. This time, the sta-
tistical errors of the primitive algorithm start growing fast
around 7=10, while our scheme can reach further than ¢
=100, providing an improvement of an order of magnitude.
Summarizing, the simulation shows that the use of our
energy-conserving sampling dramatically improves the sta-
bility of the elegant sequential time-step algorithm at long
time.

In conclusion, it is worth mentioning that the approach,
embodied by Eq. (5), to modify the transition probability in
order to respect a conservation law and improving the stabil-
ity is very general: it is by no means restricted to quantum(-
classical) dynamics in the partial Wigner representation. On
the contrary, there are reasonable expectations that the gen-
eralized scheme that we have presented here can be applied,
after suitable changes, to other stochastic approaches for cal-
culating time-dependent properties, both in the classical and
quantum cases.
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